
J. R.Mercado-Escalante et al. Int. Journal of Engineering Research and Applications  www.ijera.com 

ISSN : 2248-9622, Vol. 5, Issue 6, ( Part - 4) June 2015, pp.52-56 

 www.ijera.com                                                                                                                                52 | P a g e  

  

 

Dipolar interaction and the Manning formula 
 

J. Roberto Mercado-Escalante, Pedro A. Guido-Aldana, Waldo Ojeda-

Bustamante, Jorge Sánchez-Sesma 
(Mexican Institute of Water Technology,) 

 
 

ABSTRACT 

In this work we want to show that the mathematical model of quantum mechanics, led to its classical approach, 

is able to reproduce as close macroscopic experimental results captured by the Manning formula, sufficiently 

verified through their diverse applications in hydraulics. Molecular interaction between the fluid and the wall of 

the vessel is studied decomposing the Hamiltonian in two parts: free, and interacting. Scaling process is 

considered from molecular to hydraulic. Participation of the symmetries of Saint-Venant equation in the 

hydraulic gradient is taken into account. Correlations between different variables are set. The magnitude of scale 

change is estimated. We conclude that the Compton wavelength induces to the Boussinesq viscosity concept and 

the characteristic length of the viscous sublayer. 

Keywords – Dipolar interaction, Manning formula, Navier-Stokes fractional equation, Compton wavelength, 

Compton wavelength 

 

I. INTRODUCTION 

The purpose of this paper is to show that the 

mathematical model of quantum mechanics led to its 

classic approach is able to reproduce as close 

macroscopic experimental results collected in the 

Manning formula, sufficiently verified through its 

wide use in irrigation channels, rivers and in many 

different hydraulic applications. 

According to the references quoted, we know 

that the Navier-Stokes fractional equation is 

supported by the Darcy's fractional law, which 

simplified in the boundary layer, and based on their 

thinness, allows to define a multifractal, which has 

as resolution the reciprocal of the Reynolds number 

and as dimension the Blasius exponent, which 

depends on the spatial occupation rate and the 

pressure gradient exponent according to Falkner-

Skan approximation, [1, 2]. 

When we calculate the friction force between 

the wall and the fluid, its representation as a non-

local operator in the form of a fractional derivative is 

obtained; being an implication of the Darcy 

fractional law, it shows consistency with the viscous 

force. Subsequently, an expression for the hydraulic 

gradient is obtained, with two options: one for 

smooth surface and the other for rough surface, in 

which both the exponent for Reynolds and Froude 

numbers, depend on the Blasius exponent again. 

Moreover, based on the molecular scale we can 

describe the interaction between the fluid and the 

wall as a dipole interaction between the two 

materials. According to quantum mechanics as a 

superposition of two free particles and the 

interaction, Hamiltonian is described. Rellich  

 

 

theorem is use to expand in a power series an 

Hermitian operator which depends on a parameter, 

the Planck constant, and according to the 

perturbation, energy associated with the interaction 

between dipoles is obtained, which is the potential 

form of the Van der Waals forces, or energy 

associated with them. It contains two constants: 

Planck and fine structure. 

Interaction is dimensionless, using the Compton 

wavelength as reference length, and also the fine 

structure constant as dimensionless form of the 

square of the elementary charge. The shape 

resembles that obtained for the hydraulic gradient, 

and might be thought as a Lie derivative of a certain 

magnitude, the dimensionless interaction energy, 

which is proportional to itself. 

But it also has a relatively large magnitude that 

is associated with the contribution of relativity and 

with the constant structure, and other small 

magnitude associated with the Planck constant; if the 

method of generalized Cantor is apply, a way to 

scale from the molecular microscopic to the semi-

classical macroscopic may be reach, and the 

hydraulic gradient could be obtained. At that time 

the goal is to find a link between the rate of spatial 

occupation, and fundamental constants of the 

quantum mechanics, by relating the Blasius 

exponent with the micro-world. 

The main hypothesis is that the mathematical 

model of quantum mechanics contains that’s of the 

classical mechanics, but not vice versa, so the 

frictional interaction from the molecular scale, 

according to quantum mechanics, scale to the macro 
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level of fluids, while a relativistic expression is scale 

to the classic, must produce a result close to the 

Manning formula. 

 

II. PROBLEM FORMULATION AND SOLUTION 

OF THE MODEL 
In the quantum level, two atoms with an 

external electron and a distance of the order of 10 

A  (Angstrom) are assume, which is already a first 

approximation by simplifying the exchange 

interaction based on the interchangeability of the 

electrons. The Hamiltonian of the system, equation 

(1), correspond to atom 1, plus atom 2, plus the 

interaction energy that is denoted by  RrrW ,, 21 , 

where 
12 rrR   is the distance between the two 

atoms; 

 (1) 

 

W  is the energy associated with the interaction 

between dipoles, and in his classic description is 

represented by equation (2), where 
2e  is the square 

of the elementary charge. According to the 

mathematical model of quantum mechanics, we do 

that the classical energy matches an interaction or 

disturbance operator. After the calculation of the 

angular part and introducing the notation w  in the 

result, we have (2): 

  

(2) 

 

 

Steady state that corresponds to two isolated 

atoms or without interaction is considered, plus the 

disturbing that it introduces. We assumed that the 

interaction is weak. Solutions of the stationary 

Schrödinger equation are sought, so we try to find 

the eigenvalues and the corresponding 

eigenfunctions of the perturbed operator, under the 

assumption that the eigenvalues are non-degenerate 

and the spectrum is discrete. 

With the method of successive approximations, 

we denote  
mm

0  as a Schauder basis or complete 

set of eigenfunctions of the operator 
0H . By 

density, each state 


 supports a representation of 

the form 
m

mmc 0 . So 1st order correction of 

the fundamental is nk
EE

W
c

kn

kn
k 


 ,

00

)1(
, 

where knW  are the elements of the matrix and 
n

kE  

are the energy eigenvalues. For the 2nd order 

correction results 
 


nk kn

kn

n
EE

W
E

00

2

)2(
, [3]. 

Subsequently, it is shown that for the two 

hydrogen atoms in the fundamental state, and based 

on the Hermitian, the coefficient in the expression of 

the interaction is found to be 
5

0

26 ae , where ),( 0ae  

is the elementary charge, (

2

0 / mea 
) the Bohr 

radius and  m,  the Planck's constant and the 

mass of the outer electron, respectively. 

Finally, the energy is obtained by means of (3), 

wherein the fine structure constant is ce /2 , 

the Compton wavelength is mc/  , and c  is 

the universal constant of the light velocity, 
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2.1 MULTISCALE ANALYSIS 
 This is similar to the decomposition of 

Reynolds but reiterated. The idea is to divide a 

signal into two parts, as a direct sum, so that the first 

contains the more regular part of the signal, while 

the second, contains the more irregular, or in low 

frequency and high frequency, [4, 5]. 

According to the projection theorem, the total 

space can be decomposed into a closed subspace and 

its orthogonal complement where the sum is direct. 

Therefore, for this breakdown in the two sub-spaces 

should be considered the two projections. Then the 

procedure on the regular component is repeated, so 

that the original is now represented in three parts, 

being the last term in a different, previous or higher 

resolution scale. 

Thus it can be continued with a third stage in a 

similar way, but, the orthogonal complement 

contains the superposition of the preceding scales 

with a coarse resolution. So, at the nth step, the 

orthogonal complement contains the superposition 

of all immediately preceding scales, with a coarser 

resolution than the current, the nth resolution. 

In order N , we denote the sub-spaces of low 

and high frequencies as the pair (


NN VV , ), so 

that the relationship between the original scale of 

order 0  and that of order N  is represented by (4): 

 

    N

N VxfVxf  02                  (4) 

 

(3) 
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Consider now the sub-space of the N-th order as 

that in which the dipolar interaction occurs, so if it's 

denoted by  /,/ 0 RmmW , then 

  /,/2 0 RmmW N
 should be in the macro sub-

space of the hydraulic. Reciprocally, when it is 

decomposed to the more and more fine resolutions, 

these will contain from the dipolar interactions and 

quadrupole onwards, while it will produce 

orthogonal complements with the coarser 

resolutions. 

 

2.2 THE SYMMETRIES 

We have assumed that 0V  denotes the hydraulic 

macro space; however it is obtained from a 

projection of the Navier-Stokes fractional equation 

space, constructed through an approximation. So if 

we compose the projection from space NV  with an 

uprising from 0V  to the space of the Navier-Stokes 

equation, we will have an application from the 

bipolar interaction space until the energy space of 

the Navier-Stokes equation. 

The space where the Navier-Stokes fractional 

equation is performed is called the energy space of 

Sobolev   dH 1

0
, obtained through the closure of 

differentiable functions of any order with compact 

support, and under the condition of non-divergence, 

whose closed subspace, denoted divH , is obtained 

by adding the non-divergence condition again, [6].  

A projection is made through an approximation. 

The 0V  space, where Saint-Venant equation is 

performed, is obtained. So if we compose the 

projection from the space NV  with an uprising from 

0V  to the space of the Navier-Stokes equation, we 

have the said application from the bipolar interaction 

space to the energy space of the Navier-Stokes 

equation divH . 

In reference [7], an equation of closure is 

exposed, which is obtained by the method of inverse 

problems based on a group analysis of the equations 

system and the introduction of prior information, 

that show experimental results, both in a qualitative 

and quantitative way. 

In the cited reference [7] the hydraulic gradient 

is obtained as an inverse problem, and it is shown 

that possesses the property of form invariance, and is 

stated as follows: 

The Lie derivative of the friction slope in the 

direction of the infinitesimal generator of group v , 

is proportional to the same slope,  JtxcJL ,v , 

being the generator field variables,  hU , : the 

average velocity and the water depth. So that the 

friction slope may be find in different ways but by 

the formula 
b

a

h

U
cteJ  . 

And for both hydraulically possible states the 

following results are obtained: for smooth 

 
  2*

2

*

/

/

hRU

UU
cteJ  , and roughness 

 
  2/1

2

/

/









b

rh

h

yR

gRU
cteJ , being 

 rh ygRUU ,,,,, 2*   the average velocity, the 

shear velocity, the hydraulic radius, gravity, 

kinematic viscosity and the roughness height, 

respectively;   is the Blasius exponent and b  is the 

exponent from the hydraulic radius, in the flow 

resistance formulas, [1]. 

Next step is the identification from where could 

start the cascade process. It is intended to identify 

the source of the cascade. 

 

2.3 IDENTIFICATION 
Correlations that we propose are based on the 

infinitesimal generator in the Lie derivative vL  

which, as stated above, depends on two field 

variables: the first is the velocity and is therefore 

related to the kinetic energy in the Hamilton 

operator, the second is the water depth, and is related 

to the potential energy in the Hamiltonian. 

The expression of the interaction energy through 

the rest energy of the electron is dimensionless, as 

shown in (5), 
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The problem is decomposed into two classes 

according to the two possible regimes; so, for the 

hydraulically smooth must be (6): 

       
6

2

*0

41 /,//6  RUUmm  

  *2 /,/ UllR cch 


                                (6) 

While for hydraulically rough is (7): 

       
62

0

41 /,//6  RgRUmm h






  2/1
/

b

rh yR                                              (7) 

Consequently, correlations proposed allow to 

obtain the scalings (8): 

(5) 
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And therefore, the ratio of total scale between 

the macro and the micro will be (9): 

     ,10022.662 234112  NN
 

017.4812  NNN                       (9) 

And it is found that the transition from quantum 

to classical is based on the obvious inequality 

rc y  (the Compton wavelength and the 

roughness height). 

Then, as a consequence, we infer that the 

exponent of Blasius comes to terms with the 

microworld through the Compton wavelength, (10): 

   
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ch
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(10) 

But in addition and similarly to the multi-scaled 

process, Manning formula is recovered, which is 

widely used to estimate flow resistance in channels, 

in hydraulically rough and turbulent flow regime, by 

means of the following correlations: 
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2

 being the dimensionless 

constant, the exponent of the hydraulic radius and 

Manning roughness, and in the limit 0 , 

representing the turbulent state, fully developed, [8]: 
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(11) 

Moreover, the kinematic viscosity can be 

represented in accordance with the concept of 

Boussinesq, in the form 
3/1

4

22*2 , 







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T

llU



 , where  T ,,  

denote: Kolmogorov length, Kármán constant and 

the Taylor integral scale, this last assumed as the 

scale of vortices that contains the energy and where 

the Kolmogorov cascade is initiated, [9].  

Furthermore and accordingly, since the viscosity 

is 

 lU* , the kinematic viscosity can be scaled 

as is shown in (12), and in order to be used in natural 

flow channels with sediments: 

  1,~
/11/1

2
22 










l

ll
,         (12) 

III. DISCUSSION 
Is sufficiently justified the scaling process 

between an Hilbert space of energy, and one of its 

closed subspaces, then repeat it on subsequent 

decompositions of the same type, through the 

Projection theorem, as shown by the multiple 

applications of the wavelet transform, where in each 

stage of the process a signal is decomposed into a 

trend plus fluctuations [5]; and therefore, Reynolds 

decomposition is only a reference. 

Indeed, multiscale scaling process gradually 

shows details that are initially hidden or encrypted 

and will reveal details gradually or particularities or 

singularities not observed in the initial space. 

Moreover, the multiscale process goes in both 

directions, from the micro to the macro as in the 

opposite direction, as shown in (4). However, the 

model is not unique, because we are not taking into 

account from the quadrupole interactions forward; 

and in counterpart, we are not considering the 

subspaces complementary to close subspace. 

 

IV. CONCLUSION 
As shown in (5), the change of scale from the 

micro to the macro is determined by two important 

constants: Avogadro's number and the Sommerfeld 

fine structure constant. The micro phenomenon is 

quantum and relativistic, the first measured by the 

Compton wavelength, the second by the relativistic 

energy of the electron. As a corollary to equation 

(11) it is seen that the concept of Boussinesq 

viscosity is induced by the Compton wavelength. 

Multiscale process, the intermediate control of the 

hydraulic gradient and the constant adjustment 

reproduce the Manning formula. With regard to 

future applications it is observed that the kinematic 

viscosity can be rescaled by appropriately small 

solid particles. 
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